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ON THE SOLUTION OF PROBLEMS OF FILTRATION WITH A LIMIT GRADIENT* 

N.K. BASAK and G.A. UOMBROVSKII 

The plane stable filtration of an incompressible liquid with a limit 
gradient is considered /l/. A special non-linear filtration law is 
introduced, for which the basic system of equations obtained by trans- 
formation of the hodograph /2/ has a general solution which enables the 
theory of functions of a complex variable to be effectively employed. 
As a special case the proposed law contains the law considered in /3/. 
Solutions of the problems of the motion produced by a source in a narrow 
zone, and the motion fraa a source-sink pair are presented. 

1. Let x and y be the rectangular Cartesian coordinates of a point in the plane of 
motion, z =s+ iy (i = VT), " is the modulus of the filtration rate vector, 8 is the angle 
of inclination of the filtration rate vector to the x axis, cp = -H+ const , where H is the 
pressure head and *the stream function, and U)(v) is the function that defines the filtra- 
tion law. 

The meaning of the functions 9 and (D(v) can be defined by the differential relation 

dz_-e’o- dp l- 
id’@ 1 

@((v) + VI (1.1) 

We will introduce into the analysis the function a(v) parametrically (parameter a, a > 
0) by formulas 

ID/ye hm co 
thmo ' 

v=E- 
m+cthmo 

(1.2) 
0 

where h,m and a are arbitrary positive constants. 
Setting a= 0, we obtain v-%@=A. We have, consequently, the law of filtration with 

a limit gradient. when a+ 00; then v+ 00, cP+ 00 . Curves of @lh against w/h are 
shown in Fig.1 for various m, calculated frau (1.2). 

The casewhen m=l,a=l was considered previously /3/. 
In that case 

Q, (v) = (v" + h')rJ* (1.3) 

We shall assume cp and 'p to be functions of 0 and 8. From 
the condition for the right-hand side of the differential rela- 
tion (1.1) to be integrable we obtain the fundamental linear 
system 

Bcp X"=acthamaz, F--acthama$ iyp * 
(1.4) 

f 2 
whose general solution can be represented in the form /2/ 

Fig.1 rp = -aRe ImF (a)- cthmaF' (o)l (1.5) 
9 = Im 1m.F ((o) - th map’ (o)l 

where F(a) is an arbitrary analytic function of the complex variable (0 = a+ le. 
An important stage in solving problms by the hodograph method is the transition to the 

physical plane of motion. Using (l.l), (1.2) and (1.5) we obtain the following convenient 
transition formula (C is an arbitrary constant): 

+ ,-.&f& e@‘P (0) $- (+ + cth 2ma) e@F’ (0) - F 5 fly (0) du + c (1.6) 

Note the function F(O) = Rch mo, where R is a real constant. 
by (1.5) and (1.61, cp~O,g=O,z Econst. 

If F(o)= R ch mo , then 

boundary value problems. 
This function may prove useful in solvingspecific 

2. Below, we obtain a solution of the problem of a source in a narrow zone with imper- 
meable boundaries when (1.2) applies. The solution of this problem for the law 
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appeaxs in /5/ 
Suppose a 

Q (Y)~=u + a, a = const (2.11 

(see also /l/). In /3/ the solution was obtained when m = 1,a = 1 (law (1.3)). 
narrow strip of width 21 is bounded by the straight lines x = 1 and .x=-l. 

A source of intensity 49 is at the origin of coordinates. The modulus of the velocity at 
infinitely distant points of the narrow strip is denoted by Q, and the corresponding value 
of CT is denoted by sl. 

It is sufficient to investigate only the part of stream in the first quadrant. The half- 
strip 0 \< fl Q d&a 2 0 corresponds to this part of the flow in the o plane. The boundaxy 
condition for the function It,(a,0) is 

lp (a, 0) = 0 (a a O), Ip (0, 6) = O(0 < 6 \< n/2) 

ip (0% n/2) = 0 (0 \< EI< s?, $ (a, n/2) = p (0 > aJ 

We will solve the problem by the method analytic continuation /6/. For this we divide 
the half-strip 0 ,<eQ n/2, 020 by a section of a straight line a = al into two subregions: 
an infinite one and a finite one. In the first subregion we represent the function i: (~)in 
the form 

and in the second subregion in the form 

(Bt-RohmwC tB,Chaxm} 
k-l 

(2.2) 

(2.3) 

where A,B,R, Ak,B* are real constants (k = 1,2,. . .). 
The boundary conditions for the function 9 fa, 8) are in tbis case satisfied. Applying 

on line a = a, the condition of analytic continuation of the function +#(a.e)t we obtain 

sh(2k+m)al + sb(Zk-m)q 
2k--m 

(2.4) 

(- $ *+- 
Bk= 2ksbma, C 

p7Ul, 

2kl_m + 2ke"_m 1 (2.5) 

These formulas enable us to sum the series in expressions for F,'(o) and F,' (a). If we 
set 

we obtain the following solution, unique for the whole half-strip: 

(2.7) 

Note that when m is rational, the integrals in the expressions for II(o) and f2(~) may 
be represented in the form of finite combinations of elementary functions. 

Using (1.6) after integration and reduction, we obtain the following connection between 
the coordinates of respective points in the planes oand z: 

x5rnE -=G((a,8)P'-- 
24a 

me-@ f (m + cth rnuI)e~*arG tge@*d $.(m--cthmat)ea'arctg~r-o (2.8) 

G (a.@ = & [m-t- I,(o)+ e-2mcll (0) + @marIg (CO) + $ &zma] (2.9) 

The constant C is determined by the condition i-=0 when a = CQ. The equations 

iim r,(is)=O, lim I,(a)=0 
O-rr, b-0 

WC2re used here: they can be obtained by applying the generalized integral theorem of themean. 
Let us find the boundary of the stagnation zone, for which we let a in (2.8) tend to zero. 

The function in the expression in square brackets in (2.9) vanishes when d = 0 . Expanding 
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the indeterminancyin (2.9) when u = O,we obtain 

G (0, e) = -& 1~; (- ie) 4- 1; (- ie) + zi (8) + &WV - 2d tie) + 2d0 NOI = th mG, $~flG~ cos 2e) 
(2.10) 

Moreover we have the equations 

arc tg eal-ie = + - arc tg e++ie (2.11) 

arc tg e-01+ io- -+arctg E + -&in 
cho,+ sin 8 
cho,--in8 

-Taking into account (2.10) and (2.11) we obtain the equation for the stagnation zone 
boundary in the form 

2 (e) = s [+ (m + cth maI)@’ +(m shal -ch%cthm%) X (2.12) 

arclg$$ + (,~h~l~~O~~O - m)eie+. G(mchal-sholcth mal) ln chG'+s!n~] ch 01 -_s~n 

This proves the feasibility of defining the boundary of the stagnation zone using element- 
ary functions for any m. 

In the limiting case uI - O(u, = 0.2~ =) we have 

z(e)=& [+(m-$) + ,A8 + 

*--mr~*g @++(m_$)ln.+&.!&$] 
m cos*e 

(2.13) 

If we set m - 1. a - i , then from (2.12) and (2.13) we obtain the formulas given in /3/. 
Calculations were carried out using (2.12) including the equation 

2!L- 18 
)im m+cihmGk 

which follows from the obvious equation Q = 1vr. Parameter 

was introduced in the calculations. 
The results obtained are shown in Fig.2 for b-= 0.2 and several m. As can be seen from 

these results, the character of the original filtration law appreciably affects the size of 
the stagnation zone. 

3. We shall now use the proposed filtration law to solve the problem of motion generated 
by the source-sink pair. An approximate solution of that problem when (2.1) holds is given 

in /7/ (see also /l/). 

0 0.5 x/l f 

Fig.2 

The problem was also considered on the assumption that the func- 
tion a(v) has the form (1.3)* . The method of solution chosen 
was different from that in the present paper. 

Suppose a source of intensity 4 is situated at a point 
with coordinates2 = 1,~ = 0,andasinkofthesame intensity is at 
a point with coordinates z = -1, y=O (I> 0). The velocity at 
the origin of coordinates is denoted by v0 and the corresponding 
value of u is denoted by Uo. 

The half-strip 0 <El < a, u >O in the 0 plane corresponds 
to motion in the first quadrant of the z plane. At the boundary 
of the half-plane we have the following condition: 

9 (0, 0) = 0 (a > O), 9 (0, 0) = 0 (0 6 8 Q a) 

0 (u, n) = const (0 <u < uo), * (0, n) - q (Q > a@) 

We take the solution of system (1.4) in the form 

m=-aRe[mi W(o)do-cthmuW(o)] (3.1) 
Cl 

* Pan'ko S.V., On certain plane steady filtration problems with limit gradient. Candidate 
Dissertation, Tomsk State University, Tomsk, 1975. 
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$=Im [mfW(m)dO-thmUW(41 
n 

wherew (@)is an arbitrary analytic function of the complex variable o, W(o) = F'(o). 
The first three equations of the boundary condition written above are satisfied whenthe 

function W(o)satisfies the following boundary conditions: Im W = 0 when 8 = 0, u >O;Re W = 0 
when u = 0,O Q 8 < n; Re W 5 R sh mu when f3 = x, 0 < u < u,,, where R is an arbitrary cons- 
tant; Im W = 0 when 9 =m,U > uO. Then on part of the boundary 8 = IT,U > U0 the function 
I@ takes some constant value. It will be shown below that the constant R can be determined 
so that one part of the boundary function + takes the required value g. Using the function 
5 = ch o , we map the half-strip O< @<XI, U>O,ontotheupper half-planeofthecomplexvariable 
5 = & $- iq. At the boundary 11 = 0 we have the condition 

Im w = O (& > 1), Re W = 0 (--1 < E Q 1) 

Re W = R sh (m Arch (4)) (- ch uo < k < -i) 

Im W = 0 (5 < -ch ao) 

Applying the Keldysh-Sedow formula /8, 9/, we obtain 

u(t) = sh(m Arch(- t)), 

The constant W(x) is determined from the condition 
-1 

R 
li s q+-LW(+O 

--Ch.s. 

and we arrive at the following expression for the function W(0): 

(3.2) 

(3.3) 

(3.4) 

Let u,, be some fixed value of U , and U* >UO. Using the second equation of (3.1), we 
obtain 

o.+ni 

Im ( 5 W(o)++ 
0. 

where as the integration path it is convenient take the segment of the straight line U = a*. 
In the limit as U*- Q) we obtain 

- nRJ (0) = q/m 
whence the required value R - R, is determined. 

When m is an integer, the functionW(a)can be written is explicit form in terms of ele- 
mentary functions 

W(co)=W1(co)-R~sho, wl(o)=2&sh (+)x(~, 

vi 
x(o)= ch++sh’+) , RI= n~c,,~o_i~, m--l ( 
W (0) = Ws (0) - RI sh 20, 

WI (a) = 4Rs ( ch2 + - 2ch” +_! sh + x (0) 

Hz= 24 
x(l+3ch?.)(chao- 1) ’ m= 2 

The second terms in the expressions forW(m)can be neglected. The functions CP (U, e), 
9 (U, 9) given by (3.1) satisfy the required boundary condition, if W= W, when m = 1 and 
w- w, when m = 2. 

Let us consider the case of m= 1. In that case the formula for transition to the 
physical plane takes a very simple form 

13.5) 

where the constant C is determined from the condition 1=0 when o=o,+ xi. 
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Setting c=m, i= 1 in this formula we obtain 

51= R,o 

from which the dependence of a0 on the parameter b= d(J-0 can be determined. 

(3.6) 

Fig.3 

Passing to limit in (3.5) as 0-0 and using (3.6), we 
obtain for the stagnation zone boundary the equation 

z(6) @I12 

-i- =4x(iB)(a~cosO-icx?sin6+q) (3.7) 

c1 = 3 - cho,, a, = 1 + cho,, a, = 3&o, - i 

The case of m= 2 can be considered similarly. Evaluating 
the integral in (1.6) and transforming we obtain 

5 
';;-'= -& Ie"W,(@ + wg(o)l+ +@'* (o)%(e) + 6&B, x 

ch(o/Z)+x(o) 
In tJl (W2) [sb (Wz)+x(e)l 

s(o) = 4ea + 1 + 2cb u. - 3chsa,, &, = sh' % ch+ 

The connection between co and b when m= 2 is established using the equation 

I.1 = R&0. ao=l-3sh' +-+6~&1(cth+) 

The equation of the stagnation zone boundary when m=2 has the form 

&J(e) _ 
1 Wo In CO (~~~a~2; Ue) + 6tfjo arctg w -1 

&(hcose + iP2sin8 + fM 

fil = 3 + 10 ch u. - 9 ch’a,, b1 = i - 2 ch u. - 3 ch’ u. 

~s=1+9ch2uo-6chauo 

The stagnation zone boundaries obtained when m=? (the solid lines) and m = 2 (the 
dashed lines) are shown in Fig.3, where curves 1-3 correspond to values of the parameter 
b = aq/(hl) equal to 0.1, 0.4, and 0.7. 
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